Autoionization in liquid water.

نویسندگان

  • P L Geissler
  • C Dellago
  • D Chandler
  • J Hutter
  • M Parrinello
چکیده

The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water. Because of the short time scales and microscopic length scales involved, the dynamics of this autoionization have not been directly probed by experiment. Here, the autoionization mechanism is revealed by sampling and analyzing ab initio molecular dynamics trajectories. We identify the rare fluctuations in solvation energies that destabilize an oxygen-hydrogen bond. Through the transfer of protons along a hydrogen bond "wire," the nascent ions separate by three or more neighbors. If the hydrogen bond wire connecting the two ions is subsequently broken, a metastable charge-separated state is visited. The ions may then diffuse to large separations. If, however, the hydrogen bond wire remains unbroken, the ions recombine rapidly. Because of their concomitant large electric fields, the transient ionic species produced in this case may provide an experimentally detectable signal of the dynamics we report.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic?

Autoionization of water which gives rise to its pH is one of the key properties of aqueous systems. Surfaces of water and aqueous electrolyte solutions are traditionally viewed as devoid of inorganic ions; however, recent molecular simulations and spectroscopic experiments show the presence of certain ions including hydronium in the topmost layer. This raises the question of what is the pH (def...

متن کامل

On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation.

To understand the yield and patterns of damage in aqueous condensed matter, including biological systems, it is essential to identify the initial products subsequent to the interaction of high-energy radiation with liquid water. Until now, the observation of several fast reactions induced by energetic particles in water was not possible on their characteristic timescales. Therefore, some of the...

متن کامل

On the recombination of hydronium and hydroxide ions in water.

The recombination of hydronium and hydroxide ions following water ionization is one of the most fundamental processes determining the pH of water. The neutralization step once the solvated ions are in close proximity is phenomenologically understood to be fast, but the molecular mechanism has not been directly probed by experiments. We elucidate the mechanism of recombination in liquid water wi...

متن کامل

Microscopic dynamics of charge separation at the aqueous electrochemical interface.

We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na+I-, or classical ions, and the products of water autoionization, H3O+OH-, or water ions. We find that ...

متن کامل

Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics.

The atom-scale characterisation of interfaces between transition metal oxides and liquid water is fundamental to our mechanistic understanding of diverse phenomena ranging from crystal growth to biogeochemical transformations to solar fuel production. Here we report on the results of large-scale hybrid density functional theory-based molecular dynamics simulations for the hematite(001)-liquid w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 291 5511  شماره 

صفحات  -

تاریخ انتشار 2001